SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 QUESTION BANK (DESCRIPTIVE)

Subject with Code :Engineering Mathematics-III (16HS612)

Year & Sem:II-B.Tech & I-Sem Regulation: R16 Course & Branch: B.Tech Com to all

<u>UNIT – I</u>

1.	a) Show that $w = \log z$ is analytic everywhere except at the origin and find $\frac{dw}{dz}$.						
	b) If $f(z)$ is analytic function of z prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) log f(z) = 0$	[5M]					
2.	a) Show that $u = \frac{x}{x^2 + y^2}$ is harmonic.	[5M]					
	b) Find the analytic function whose imaginary part is $e^x(xsiny + ycosy)$.	[5M]					
3.	a) Determine p such that the function $f(z) = \frac{1}{2}\log(x^2 + y^2) + itan^{-1}\left(\frac{px}{y}\right)$ be an analy	tic.[5M]					
	b) Find all the values of k, such that $f(z) = e^x (\cos ky + i \sin ky)$	[5M]					
4.	a) If $f(z) = u + iv$ is an analytic function of z and if $u - v = e^{x}(\sin x - \cos y)$ find						
	f(z) in terms of z.	[5M]					
	b) Find the analytic function $f(z)$ whose real part is $e^x(x \sin y + y \cos y)$.	[5M]					
5.	a)Show that $f(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane. [5M]						
	b)Show that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial Z \partial \overline{Z}}$	[5M]					
6.	a) Evaluate line integral $\int f(z) dz$ where $f(z) = y - x - 3x^2 i$ and C consists of two						
	Straight line segments one from $z = 0$ to $z = i$ and the other from $z = i$ to $z = 1 + i$	[5M]					
	b) Evaluate $\int \frac{\cos z - \sin z}{(z+i)^3} dz$ with $C: z = 2$ using Cauchy's integral formula.	[5M]					
7.	Calculate $\int f(z) dz$ where $f(z) = \pi exp\pi \bar{z}$ and C is boundary of the square with vertices	s at					
	the points $0, 1, 1 + i, \& i$ where c being in the clockwise direction	[10M]					
8.	Evaluate $\int_0^{1+3i} (x^2 - iy) dz$ along the paths. <i>i</i>) $y = x$ <i>ii</i>) $y = x^2$	[10M]					
9.	a) Evaluate $\int \frac{\sin^2 z}{\left(z - \frac{\pi}{6}\right)^3} dz$ where $C: z = 1$	[5M]					
	b) Evaluate $\int \frac{\log z}{(z-1)^3} dz$ where $C: z-1 = \frac{1}{2}$ using Cauchy's integral formula.	[5M]					
10. if C denotes the boundary of the square whose sides lie along the lines $x = \pm 2$, $y = \pm 2$							
	Where c is described in the positive sense, evaluate the integrals						
	$i) \int \frac{e^{-z}}{\left(z - \frac{\pi i}{2}\right)} dz \qquad \qquad ii) \int \frac{\cos z}{z(z^2 + 8)} dz \qquad \qquad [10M]$]					

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 QUESTION BANK (DESCRIPTIVE)

Subject with Code : Engineering Mathematics-III (16HS612)

Year & Sem:II-B.Tech & I-SemRegulation: R16 Course & Branch: B.Tech Com to all

<u>UNIT – II</u>

1.	a) Determine the poles of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and the residues at each pole	[5M]
	b) Find the residue of the function $f(z) = \frac{1}{(z^2+4)^2}$ where c is $ z - i = 2$.	[5M]
2.	a) Find the residues of $f(z) = \frac{z^2}{1-z^4}$ at these singular points which lies inside the circle	
	z = 1.5	[5M]
	b) Find the residues of $f(z) = \frac{z^2}{z^2 + a^2}$ at $z = ai$	[5M]
3.	a) Determine the poles of the function $f(z) = \frac{z^2+1}{z^2-2z}$ and the residues at each pole	[5M]
	b) Determine the poles and residues of $\tan hz$.	[5M]
4.	a) Evaluate $\int_{-\infty}^{\infty} \frac{\cos ax}{x^2+1} dx$, $a > 0$	[5M]
	b) Find the residue of the function $f(z) = \frac{2e^z}{(z-3)z}$ where c: $ z = 2$.	[5M]
5.	Evaluate $\int_0^{\pi} \frac{1}{a+b\cos\theta} d\theta = \frac{\pi}{\sqrt{a^2-b^2}}$, $a > b > 0$	[10M]
6.	Show that $\int_{0}^{2\pi} \frac{\cos 2\theta}{1+2a\cos\theta+a^2} d\theta = \frac{2\pi a^2}{1-a^2}$, $(a^2 < 1)$ using residue theorem.	[10M]
7.	a) Find the bilinear transformation which maps the point's $(\infty, i, 0)$ in to the points $(0, i, \infty)$ b) Find the bilinear transformation that maps the point's $(0, 1, i)$ in to the points $1 + i, -i$,	∘)[5M]
	2-i in w-plane	[5M]
8.	a) By the transformation $w = z^2$, show that the circles $ z - a = c$ (<i>a</i> , <i>c</i> being real) in the Z-plane corresponds to the limacons in the w-plane	[5M]
	b) Find the image of the region in the z-plane between the lines $y = 0 \& y = \frac{\pi}{2}$ under the	
	transformation $w = e^z$.	[5M]
9.	a) Find the bilinear transformation which maps the points $(\infty, i, 0)$ in to the points $(-1, -1, 1)$ in w-plane.	[5M]
	b) Find the bilinear transformation that maps the point's $(1, i, -1)$ in to the points $(2, i, -1)$	2)
10	a) The image of the infinite strip bounded by $r = 0.8$, $r = \frac{\pi}{2}$ under the transformation	
10.	$w = \cos 2$	[5M]
	b) Prove that the transformation $w = \sin z$ maps the families of lines $x = y = constant$	
	into two families of confocal central conics.	[5M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :ENG MATHEMATICS-III(16HS612)Course & Branch:Year & Sem: II-B.Tech & I-SemRegulation: R16	B.Tech(ALL				
<u>UNIT –III</u>					
1. Find a positive root of $x^3 - x - 1 = 0$ correct to two decimal places by bisection method.	[10 M]				
2. Find out the square root of 25 given $x_0 = 2.0$, $x_0 = 7.0$ using bisection method.					
3. Find out the root of the equation $x \log_{10}(x) = 1.2$ using false position method.					
4. Find the root of the equation $xe^x = 2$ using Regula-falsi method.					
5. Find a real root of the equation $xe^x - \cos x = 0$ using Newton- Raphson method.	[10 M]				
6. Using Newton-Raphson Method					
a) Find square root of 10. [5 M] b)Find cube root of 27.	[5 M]				
7. From the following table values of x and $y = tanx$ interpolate values of y when $x = 0.12$ and $x = 0.28$ x 0.10 0.15 0.20 0.25 0.30	[10M]				
y 0.1003 0.1511 0.2027 0.2553 0.3093					
8. a) Using Newtons forward interpolation formula., and the given table of values					
x1.11.31.51.71.9f(x)0.210.691.251.892.61					
Obtain the value of $f(x)$ when $x=1.4$	[5M]				
b) Evaluate $f(10)$ given $f(x) = 168,192,336$ at $x = 1,7,15$ respectively,					
use Lagrange interpolation.	[5 M]				
 9. a) Use Newton's Backward interpolation formula to find f(32) given f(25) = 0.2707, f(30) = 0.3027 f(35) = 0.3386, f(40) = 0.3794 b) Find the unique polynomial P(X) of degree 2 or less such that P(1) = 1 P(3) = 27, using Lagrange's interpolation formula. 	[5M] P4 = 64 [5M]				

- 10. a)Using Lagrange's interpolation formula, find the parabola passing through the points (0,1),(1,3) and (3,55) [5M]
 - b) For x=0,1,2,3,4; f(X) = 1,14,15,5,6 find f(3) using forward difference table. [5M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :ENG MATHEMATICS-III(16HS612)Course & Branch: B.Tech (All)Year & Sem: II-B.Tech & I-SemRegulation: R16

					UN	<u>IT –IV</u>					
1.Fit the	e curve y =	$= ae^{bx}$ to t	he follo	owing da	ta.					[1	0 M]
Х	0	1	2	3		4	5	6	-	7	8
у	20	30	52	7	7	135	211	32	6 5	550	1052
2. a)Fit	the expone	ential curv	e of the	e form	y = al	b^x for t	he data	4		[5	M]
$\frac{\Lambda}{V}$		7		<u></u> 11		3		4			
$\frac{1}{b}$ Fit $\frac{1}{b}$	/ a straight li	ne v−a⊥h	v from	11 the follo	wing da	1/ 1/		27			MI
x		110 y = a + 02	1		$\frac{1}{2}$	iia	3		4		141]
v	1		1.8		3.3		4.5		6.3		
2			1		1						
3. a) Fit	a second c	legree pol	ynomia	l to the f	ollowin	ıg data l	by the met	thod of l	east squ	ares	[10 M]
X	0		1		2		3		4		
у	1		1.8		1.3		2.5		6.3		
b) Fit a	straight lin	e y=ax+b	from th	ne follow	ing dat	a				[5 M]
X	6	7 7	/	8	8	8	9	9	10)	
у	5	5 4	•	5	4	3	4	3	3		
1 Fita	Power cury	ve to the fo	llowin	a data							
<u>ч. т п а </u> Х	1 0 wei eur		2	guata	3		4	5	i	6	
		<u>_</u>	4 26		5.21		6.10	6	5.80	7.	50
y	2.9	8	7.20		· ·		0.10	C C			
у	2.9	8	7.20	[5M]	0.21		0.10				
у	2.9	8	4.20	[5M]	0.21		0.10			ł	
y b) Fit a	2.9	8 gree polyn	omial t	[5M] o the foll	lowing	data by	the metho	od of lea	st squar	es	[5 M]
y b) Fit a x	second deg	8 gree polyn	omial t	[5M] o the foll	lowing	data by	the metho	od of lea	<u>st squar</u> 4	es	[5 M]
y b) Fit a x y	2.9 second deg 0 1	8 gree polyn	$\begin{array}{c c} \hline 1 \\ \hline 5 \\ \hline \end{array}$	[5M] o the foll	lowing 2 10	data by	the metho 3 22	od of lea	st squar 4 38	es	[5 M]
y b) Fit a x y 5. a) Fit	second deg 0 1 the curve	8 gree polyn of the forr	omial to 1 5 y = a	[5M] o the foll	lowing 2 10	data by	the method	od of lea	st squar 4 38	es	[5 M] M]
y b) Fit a x y 5. a) Fit x	2.9 second deg 0 1 the curve 77	8 gree polyn of the forr	$\begin{array}{c c} \text{omial t} \\ \hline 1 \\ \hline 5 \\ \text{n } y = a \\ \hline 100 \end{array}$	[5M] o the following ue^{bx}	lowing 2 10 185	data by	the metho 3 22 239	od of lea	st squar 4 38 285	es [5	[5 M] M]
y b) Fit a x y 5. a) Fit x y	2.9 second deg 0 1 the curve 77 2.4	8 gree polyn of the forr	$\begin{array}{c c} \text{omial tr}\\ \hline 1\\ \hline 5\\ \hline n \ y = a\\ \hline 100\\ \hline 3.4 \end{array}$	$[5M]$ o the foll ue^{bx}	lowing 2 10 185 7.0	data by	the metho 3 22 239 11.1	od of lea	st squar 4 38 285 19.6	es [5	[5 M] M]
y b) Fit a x y 5. a) Fit x y b) Fit th	2.9 second deg 0 1 the curve 77 2.4 te curve of	gree polyn of the forr the form	$\begin{array}{c c} \text{omial tr}\\ \hline 1\\ \hline 5\\ \text{n } y = a\\ \hline 100\\ \hline 3.4\\ y = ab^{3} \end{array}$	[5M] o the following the following of	lowing 2 10 185 7.0	data by	the metho 3 22 239 11.1	od of lea	st squar 4 38 285 19.6	es [5	[5 M] M] [5 M]
y b) Fit a x y 5. a) Fit x y b) Fit th x	2.9 second deg 0 1 the curve 77 2.4 the curve of 2	gree polyn of the forr the form	$\begin{array}{c c} \text{omial t} \\ \hline 1 \\ \hline 5 \\ \text{m } y = a \\ \hline 100 \\ \hline 3.4 \\ y = ab^{3} \\ \hline 3 \end{array}$	$[5M]$ o the foll ue^{bx} f for	lowing 2 10 185 7.0	data by	the metho 3 22 239 11.1 5	od of lea	st squar 4 38 285 19.6 6	es [5	[5 M] M] [5 M]
y b) Fit a x y 5. a) Fit x y b) Fit th x y	$\begin{array}{c c} 2.9 \\ \hline \\ second \ deg \\ \hline \\ 0 \\ 1 \\ \hline \\ the \ curve \\ \hline \\ 77 \\ 2.4 \\ e \ curve \ of \\ \hline \\ 2 \\ 8.3 \end{array}$	gree polyn of the forr the form	$\begin{array}{c c} \text{omial tr}\\ \hline 1\\ \hline 5\\ \text{n } y = a\\ \hline 100\\ \hline 3.4\\ y = ab^{3}\\ \hline 3\\ \hline 15.4 \end{array}$	[5M] o the following the following of	lowing 2 10 185 7.0 4 33.1	data by	the metho 3 22 239 11.1 5 65.2	od of lea	st squar 4 38 285 19.6 6 127.4	es [5	[5 M] M] [5 M]
y b) Fit a x y 5. a) Fit x y b) Fit th x y	2.9 second deg 0 1 the curve 77 2.4 the curve of 2 8.3	8 gree polyn of the form the form	$\begin{array}{c c} \text{omial tr}\\ \hline 1\\ \hline 5\\ \text{n } y = a\\ \hline 100\\ \hline 3.4\\ y = ab^{3}\\ \hline 3\\ \hline 15.4 \end{array}$	$[5M]$ o the foll ue^{bx} f for $\frac{6}{6}$	lowing 2 10 185 7.0 4 33.1 1	data by	the metho 3 22 239 11.1 5 65.2	od of lea	st squar 4 38 285 19.6 6 127.4	es [5	[5 M] M] [5 M]
y b) Fit a x y 5. a) Fit x y b) Fit th x y 6. a) Us	2.9 second deg 0 1 the curve 77 2.4 te curve of 2 8.3 ing Simpso	gree polyn of the form the form on's $\frac{3}{8}$ rul	$\begin{array}{c c} \text{omial t} \\ \hline 1 \\ \hline 5 \\ \text{n } y = a \\ \hline 100 \\ \hline 3.4 \\ y = ab^3 \\ \hline 3 \\ \hline 15.4 \\ \text{e, evalue} \end{array}$	[5M] o the following the following of	lowing 2 10 185 7.0 4 33.1 $\frac{1}{x^2} dx$	data by	the method 3 22 239 11.1 5 65.2	od of lea	st squar 4 38 285 19.6 6 127.4	es [5	[5 M] M] [5 M]

Mathematics – I

OUESTION BANK2017b) Evaluate
$$\int_{0}^{1} \sqrt{1 + x^3} dx$$
 taking h =0.1 using Trapizoidal rule[5M]7. Dividing the range into 10 equal parts ,find the value of $\int_{0}^{\pi/2} \sin x dx$ using Simpson's $\frac{1}{3}$ rule.[10M]8. Evaluate $\int_{0}^{1} \frac{1}{1 + x} dx$ [10 M]i) By trapezoidal rule and Simpson's $\frac{1}{3}$ rule.ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value.9. a) Compute $\int_{0}^{4} e^x dx$ by Simpson's $\frac{1}{3}$ rule with 10 subdivisions.[5 M]b) .Find $\int_{3}^{7} x^2 \log x dx$, using Trapezoidal rule and Simpson's rule by 10 sub divisions.[5 M]10.a) Evaluate approximately,by Trapizoidal rule, $\int_{0}^{1} (4x - 3x^2) dx$ by taking n=10.[5M]

b) Evaluate
$$\int_{0}^{1} e^{-x^{2}} dx$$
 (5M]
taking h = 0.25 using

Mathematics - I

8. a)Using R-K method of 4th order, solve
$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$
, y(0)=1 Find y(0.2) and y(0.4) [6 M]

b)Obtain Picard's second approximate solution of the initial value problem [4M]

$$\frac{dy}{dx} = \frac{x^2}{y^2 + 1}, y(0) = 0$$

9. Using R-K method of 4th order find y(0.1),y(0.2) and y(0.3) given that $\frac{dy}{dx} = 1 + xy, y(0) = 2$ [10M]

10. a)Find y(0.1) and y(0.2) using R-K 4th order formula given that $y^1 = x^2 - y$ and y(0)=1 [5 M]

b) Using Taylor's series method, solve the equation $\frac{dy}{dx} = x^2 + y^2$

for x = 0.4 given that y = 0 when x = 0.

[5 M]